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Abstract

Using a high-order accuracy finite-difference time-domain algorithm, the acoustic scattering

from a flat-plate cascade is computed. Keeping the grid and time step fixed, the effect of four dif-

ferent boundary conditions on the accuracy and stability of the computed solution is compared.

Introduction

Despite recent efforts to introduce quieter aircraft, it is expected that noise will increase as a

barrier to air transportation 1"3. For high-by-pass jet engines, fan noise becomes comparable to jet

noise 4 . With current emphasize placed on jet noise reduction, fan noise could become the domi-

nant noise source in the near future. Fan noise can be classified into three main sources5: inlet

boundary layer or inflow distortions interacting with the fan; self noise from the fan; and fan

wakes interacting with stators or struts. Both tone noise and broadband noise can be generated.

The gust-cascade interaction can be taken as representing the interaction of inflow distur-

bances with the fan or the interaction of the fan wakes with the stator 6,7. In the simplest gust-cas-



cade model the bladesare represented as two-dimensional flat plate cascades stacked in the

spanwise direction. The inflow distortions or the fan wakes are represented by vortical gusts con-

vected with the mean flow. The interaction of the gust with the blades produces unsteady pressure

distribution over the blades' surfaces. If this unsteady surface pressure is coupled to the propaga-

tion duct modes inside the nacelle, the radiated inlet and exhaust sound can be obtained. Classical

work on the gust cascade problem has relied on approximate analysis and empirical formulation

and is reviewed by Huff in Ref. 5. The two- dimension gust-cascade interaction has been studied

by Kaji and Okazaki 8. Three-dimensional effects are considered by Namba who pointed out that

3-D effects become less important at high acoustic-response frequencies 9. Effects of loading and

nonuniform transonic flow are given by Atassi et al.lO. Effects of camber, thickness and stagger

angles are given in Lorence and Hall 11.

In the present decade considerable progress in the relatively new science of Computational

Aero-Acoustics (CAA) has been achieved. In CAA, the unsteady governing equations are dis-

cretized and solved for time-dependent flow variables, which includes the mean flow and the flow

or acoustic disturbances. High-order schemes are required for discretization to reduce dissipation

and dispersion errors. But high-order schemes support the formation of spurious modes at the

boundaries of the computational domain. Careful attention for unsteady boundary treatment is

needed to produce the physically correct disturbance field.

Considerable progress has been made in applying CAA to jet noise (see review articles by

Mankbadi 12 and Tam13). Application of CAA to fan noise is still limited, and it is required to

demonstrate first the ability of CAA to accurately predict simple models of fan noise elements.

To achieve this purpose the gust-cascade model was considered as benchmark problem in second

workshop on bench mark problems for CAA 14. The amplitude of the gust was taken to be small;
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thus, either the linearized or the full Euler equations can be used and comparison with analytical

theories can be made. The objective was to demonstrate what CAA algorithms can offer as even-

tual substitute for simpler source models. Several algorithms were used to compute this

problem 15"17, and the results were compared to a solution from Hall 18. The computed results,

however, varied considerably from Hall's solution and from each other.

It is suspected that the unsteady boundary treatment could be responsible for the discrepancy

between the above simulations of the same gust-cascade problem. This might be particularly true

for the time-domain simulations, where no exact boundary treatment exists. This issue is

addressed in this paper. We show that the inflow and outflow treatment has considerable influence

on the solution. Some boundary treatments are shown to produce satisfactory agreement with the-

ory given a longer computational domain.
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Figure 1: Turbomachinery Noise Benchmark Problem
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Problem Statement

This benchmark problem consists of four flat-plate airfoils in an unstaggered cascade, shown

in Fig. 1. In this problem, a periodic vortical gust is convected in a uniform mean flow, impinging

on the tim-plate cascade and radiating noise upstream and downstream. At the inflow boundary,

the mean flow and vortical gusts are defined as:

Veo

--=0.5
Coo

-A--_ cos (e.x + 13y- cot) (1)
U gust = 13[

vs,,,t= Acos(e.x+ 13y-cot)

where

A = 0.01

5n (2)= co= T

The computational domain is limited to:

-2_x_3 (3)

O_y_4

4 ..J
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This problem is to be solved with either the linearized or the full Euler equations. The output

requested is: (1) the real and imaginary component of the pressure jump across the airfoil, and (2)

the intensity of the radiated sound ,52 at the inflow and outflow boundaries.

Governing Equations and Numcri¢_d Formulation

The conservative 2-D Euler equations in Cartesian coordinates are given as:

P

, pu

pv

E

pu

+ pu 2 + p

puv

u(E + p)

pP

puv

pv 2 + p

v(E + p)
Y

= 0 (4)

where

p = (7-1)(E 12-_p(u +v2)) (5)

The numerical solver is a high-order accurate finite-difference time-domain scheme. The spa-

tial derivatives are computed using a split sixth-order compact scheme 19, and the time integration

is performed using Hu's 5-6 Low Dispersion and Dissipation Runge-Kutta method 20. The grid

used is a uniform Cartesian grid where Ax = Ay = 0.02. Since the vortical gust has a wavelength

of 0.8, this gives 40 points per wavelength, which produces a linear dispersion error of 1.e-9.

For all calculations, the time step used was At = 0.0125, which corresponds to a CFL number



of 1.2.

Boundary Condition Formulation

1) Thompson BC

The Thompson boundary condition 21"22 uses 1-D characteristic theory to determine the

proper boundary condition specification. In the Thompson method, we only consider the effect of

the characteristics normal to the boundary; the tangential derivative terms are considered to be a

source term. Thus, Eq. (4) becomes:

P

pu I

E

pu

+ pu 2 +p

puv

u(E + p)

= {S} (6)

The normal flux term is then linearized and decomposed into 1-D characteristics:

(c_), + (_ - Z')(p' x- O_u'x) = 0

(c2)t + fi(_2P'x- fix) = 0 (7)

(C3) t+uv' x = 0

(C4)t + (U + ?")(fix+ OC'U'x)= 0

where the overbar terms denote mean quantities. Thus, at the outflow boundary,

6
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V' = V-9

p'=p-p

(8)

However, the incoming vortical gust must be specified at the inflow boundary.

this,

To accomplish

p'= p-_

U' = U-- U -- Ugus t

V' -- V-- V-- Vgus t

p'=p-p

(9)

These characteristics given in Eq. (7) represent, respectively, the left-running acoustic wave,

the entropy wave, the vorticity wave, and the right-running acoustic wave. In Thompson's

approach, the direction of travel of the characteristic determines if it is propagating into or out of

the domain. The characteristics that are propagating out of the domain are left unchanged; those

propagating into the domain are set to zero.

Once the characteristics are determined, the time derivatives of the primitive variables are

given as:

7



Pt "_"

(2(C2)t+ (Ci)t+ (C4)t)

2_:2

(Cl)t+ (C4)t

Pt = 2 (I0)

v,= (c3),

With the primitive variables now known, the time derivative of the conserved variables are cal-

culated as:

(PU)t= Out+ _Pt

(pv) t = Ovt (11)

1 2 Pt

E, = [Cr, )p, + r- ,::--;+ _u,

2) Giles BC

The Giles boundary condition 23 resembles the Thompson boundary condition in that they are

both based on 1-D characteristics. However, instead of decomposing the equations into normal

and tangential components, Giles considered only the normal component and formulated correc-

tions for the effect of the tangential component. Thus, while Thompson's analysis was geared

towards only normal and tangential 1-D waves, Giles' analysis allows for waves with other angles

of incidence.
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To apply the Giles boundary condition, the interior equations are used at the boundary to com-

pute the time derivatives. The 1-D characteristics are then defined as:

(cl)t = P't- pcu't

(%)t = c'2P't-P't (12)

(%)t = pcv't

(C4)t = P't + pCU't

The outgoing characteristics are left unchanged, but the incoming characteristics are modified.

At the inflow boundary,

(%)y = _2P'r- P'r

(C3)y = Oev'y

(c4)y = p'y + 0_u'y

(13)

The time derivatives of the characteristics are computed using:

(c2) t + f,(Cz)y = 0

(c3) t + _(C3)y + _[(u + _')(C4)y + (2 - _7)(Cl)y ] = 0

(C4) t + (_')(C4)y--I[(u -- _')(C3)y ] = 0 (14)



To account for the incoming vortical gust, the variables are decomposed as shown in Eq. (9).

Once the time derivatives of the characteristics are known, Eqs. (10) and (11) are used to deter-

mine the time derivatives of the conserved variables.

At the outflow boundary, only one characteristic is corrected. The variables are decomposed

as shown in Eq. (8), and the tangential derivatives are taken:

(15)

The incoming characteristic is updated as:

(Cl)t+ U(C3)y + _(Cl)y = 0 (16)

3) Hagstrom BC

Again, like the Giles equations, the Hagstrom boundary condition 24 is formulated in terms of

the 1-D normal characteristics:

(Cl) = p'-_u'

(c2) = _2p,_p, (17)

(c a) = _v'

10
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(c4) = p'+ _u'

As in the Giles boundary condition, the incoming characteristics are corrected while the out-

going characteristics are left unchanged. However, unlike the Giles boundary condition, the cor-

rections are determined by solving additional equations at the boundary, with the user determining

how many equations are needed for accuracy. The effect of these equations is to match to increas-

ing order the short time expansion of the exact boundary solution.

The inflow boundary condition takes the following form:

(c2)t - 0

(C3)t + PC(UU'y + VV'y + _P'y) = 0

N
1___ 1

(C4) t + V(C4)y + _pC(C -- U)'P'y + _ E (f J + gJ) = 0
y=i

(18)

Here, f and g are the correction equations, which are given by:

(f j)t + (_' + C)(f J)r + S(C4)yy = 0

(gj)t + (_'- C)(gj)y + S(C4)yy = 0

(19)

where

II



(20)

(e2__2)(. ( :_ ,_2
S - 2-N"_-]" _,sln_,2N + 1))

For the inflow condition, the prime terms are defined in Eq. (9).

The ouflow condition is written as:

N

(Cl) t + _(Cl)y + p_.FtV'y + E (f J + gJ) =

j=l

0 (21)

Here, the correction equations are given by:

(f j)t + (_ + C)(f j)y + S(p')yy = 0

(gJ)t + ((:- C)(gj)y + S(p')yy = 0

(22)

For the outflow equations, the prime terms are defined in Eq. (8).

4) Perfectly Matched Layer

In the Perfectly Matched Layer (PML) boundary condition, a numerical 'sponge layer' is con-

structed which surrounds the domain of interest. When a wave propagates into this layer, it is

damped with little reflection regardless of the angle of incidence or the wavelength of the incident

12



wave.

The PML used here is that of Abarbanel and Gottlieb 25. In their approach, the Euler equations

are linearized about a uniform mean flow in the x-direction. A transformation is applied to the

equations, and a PML layer is constructed mathematically. For the cascade problem, the sponge

layer is only in the x-direction. The PML equations are given as:

u't + Mu'x + P'x = -(_(u' + Mp')

v' t + Mv' x + p'y = - _(v' + 2Q + o_F) + 6xMP

! ! !

Pt+MP'x+Ux+Vy = -a(Mu'+p')

Qt + (1 - M2)p'y = 0

Pt = (1 - M2)(v ' - aP)

_t = (1-M2)Q

(23)

Here, the a denotes the damping factor, which varies through the layer as:

-
k,Xen d --Xstart/

(24)

To implement these equations into the nonlinear code, the equations are transformed into:

(u't)/,Mt ' = --O(U' + Mp')

13



(v't)pM L = -- 6(v' + 2Q + 6_) + 6xMP

(P't)J'ML = -6(Mu' + p')

Qt + (1 - M2)p'y = 0 (25)

Pt = (1-M2)(v'-oP)

W t = (1-M2)Q

As before, the prime quantities are determined using Eq. (8) at the outflow, and (9) at the

inflow. The Abarbanel and Gottlieb formulation does not include the density equation; to com-

plete the equation set, the flow is assumed to be isentropic:

?'2(p't)PML = (P't)PML (26)

Once the PML corrections are calculated, they are converted into conserved variables using

Eq. (11) and added to the time derivatives computed using the nonlinear Euler equations.

In all calculations, a 20-point PML layer was employed.

Numerical Results

Two tests were performed for each boundary condition. In both tests, the mean flow was ini-

tialized as:

_=1

14
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_=0.5

_=0 (27)

1
_=-

The perturbations were initialized as:

Pgust(X, y, O) = 0

Ugust(X, y, O) = -q(x)_-cos(o_x + [Sy - cot)

Vgust(x, y, O) = -q(x)Acos(otx + [3y - cot) (28)

Pgust(X,y, O) = 0

where

f )x<-2
1 1 x (29)(x 2)-2<x<0

q(x) = _.+ _cos +

0 x>O

In the first test, the cascade is removed from the domain, and the ability of the boundary con-

dition to allow the flow to reach a periodic state is tested. In the second test, the cascade is placed

in the flow and the result is compared with the semi-analytic result.

15
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1) Test Problem 1: No Cascade

In the first test problem, the domain was initialized with the perturbation given in Eq. (28),

and the cascade was removed. This tests the implementation of the upstream disturbance as well

as the ability of the outflow boundary condition to allow the vortical gust to convect out without

reflection. The grid for all cases had a uniform spacing of Ax - Ay = 0.02.

In these problems, the time history of pressure is shown at two points, (-2,0) and (3,0). Figures

2 and 3 show the pressure time history at these two points for the different boundary conditions.

From top to bottom, the graphs show the Thompson BC, the Giles BC, the Hagstrom BC using 3

equations, the Hagstrom BC using 10 equations, and the Perfectly Matched Layer (PML) BC.

Notice that the scales are all similar except for the Thompson boundary condition, which does not

give an adequate solution for this problem. Also, the 10-equation Hagstrom condition does not

give a better solution than the 3-equation Hagstrom boundary condition. This is not surprising, as

0.006 , ,

.... : on

l q9 q) I I .... Hagstrom (3 eqn)
-- 0.000 _-._- HM_Ltr°rn (10 eqn)

-0.003

I t

"0"006-2.0 0.0 2.0

x

Figure 4: V Velocity Distribution along y = 0 Line
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the Hagstrom BC is designed to perform well for transients and not for long-term time marching,

and, as the number of auxiliary equations is increased, the long-term solution may be less accu-

rate.

Figures 4 and 5 show the v velocity and pressure distributions along the y--0 line. The inflow

vorticity specification is working well, as shown in Fig. 4. Figure 5 illustrates the pressure error,

which is mainly due to the boundary conditions reflecting the outgoing vorticity and the acoustic

waves generated by the initial vorticity specification. From Figure 5, the Thompson condition is

giving a much worse solution than the other boundary conditions; the other boundary conditions

have roughly equivalent levels of error.

2) Test Problem 2: Specified Domain Calculation

The next calculations were performed on the specified domain, which covered -2 < x < 3. All

|
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. I

0.0 2.0

Figure 5: Pressure Distribution along y = 0 Line
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of the boundary conditions were tested for this configuration.

Figures 6 and 7 show the pressure time history at the inflow and outflow boundary points.

Some of the data is fragmentary; this is due to the lead author's inability to type while transferring

data.

The Thompson boundary condition proved to be unstable due to reflections from the inflow

boundary interacting with the cascade and initiating a feedback loop. Figure 6 illustrates the rapid

buildup of pressure in the domain.

The Hagstrom boundary conditions were very slowly unstable for this problem, as Figs. 6 and

7 show. As expected, adding more equations at the boundary improved the transient solution;

however, the long-term periodic solution was not improved. Also, as more equations were added.

the solutions took longer to converge. Again, it must be noted that the Hagstrom boundary condi-

tion was developed for transient problems and not for long-term periodic problems.

0.90 [ ,_ i i 0

0.80 _ .A -- Thompson
0.70

I I , I ,

0"%.0 100.0 200.0 300.0

0.7145 _!_a, mn!!_3_!_!!ltW_[lIMl_ltl -- _Jos
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Figure 6: Pressure Time History at Inflow Boundary Point (-2,0)
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Both the Giles and the Perfectly Matched Layer boundary conditions allowed a stable long-

term solution to be calculated. The PML condition required extra points in the buffer zone; how-

ever, it did improve the solution at the boundary somewhat.

Figures 8 and 9 show the RMS pressure results calculated using these boundary conditions.

All solutions were in the same range, with the PML boundary condition performing slightly better

than the rest.

Figure 10 shows the pressure difference across the y--0 airfoil for the Giles boundary condi-

tion; all of the stable boundary conditions allowed identical airfoil results to be obtained. The

effect of the numerical singularities at the leading and trailing edge are illustrated. Wall conditions

were applied for the upper and lower leading and trailing edge points, with the results being aver-

aged and applied to both points.

It must be noted that these singularities are purely due to the infinitely thin airfoils prescribed

0.7145 _ ' 10.7140 Giles
t__ ............. l t

0.71350. 0 100.0 200.0 300.0 400.0

0.7140 Hagstrom 3 eqn
L "_ , I | , t ,

0"71350,0 100.0 200.0 300,0 400.0
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I
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Figure 7: Pressure Time History at Outflow Boundary Point (3,0)
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in the problem statement; it is expected that these singularities are the main factor causing the

error on the airfoil. Future work will address the effects of real airfoil geometries.

3) Test Problem 3: Long Domain Calculation

To quantify the relative effect of the numerical singularites and the close boundaries on the

computed solution, the same calculation was performed on a long domain (-8 < x < 9) using the

same grid spacing and time step. For these calculations, which required much more CPU time to

converge, only the Giles and PML boundary conditions were used. Figure 11 shows that the solu-

tion on the sirfoil does not change as compared to the short domain solution.

Figures 12 and 13 show the computed RaMS pressure disturbances at the upstream and down-

stream locations. Using this long domain, both boundary conditions give a solution that is close to

the exact solution in phase, with a greater amplitude. It is theorized that the errors in the pressure

¢:
r_

|
a.

Figure 10:
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2.0

0.0

-2.0
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Comparison of Airfoil Pressure Distribution with Exact Solution
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on the airfoil dueto the numericalsingularitiesarecausingthe amplitude error. However, the

PML outflow condition is performing better than the Giles outflow condition, as shown in Fig. 13.

Figure 14 shows the effect of the extended domain on the pressure contours using the Giles

boundary condition. On the airfoil itself, the contours are nearly identical. In the upstream direc-

tion, the contours become different as the inflow boundary is approached, showing that there is

some reflection from the inflow boundary condition. In the downstream direction, however, the

contours diverge almost immediately after the trailing edge, suggesting that the outflow boundary

condition is more reflective than the inflow.

Conclusions

Several boundary conditions were tested on a CAb, Workshop Benchmark Cascade problem.

The problem is very difficult due to numerical singularities in the problem specification as well as

6°0 i i i t

O Real exact ]
[] Imaginary exact ]

Imaginary Giles
4.0 Real Giles I

2.0

0.0

i I I J"2"_.0 02 0.4 0.6 0.8 1.0

Figure 11: Comparison of Airfoil Pressure Distribution for Long Domain Solution
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the proximity of the boundaries. Since the problem in periodic in one direction, the ability of the

boundary condition to allow acoustic and vortical waves to exit without reflection determines the

stability and accuracy of the solution. It was found that the error due to the numerical singularities

at the leading and trailing edges of the fiat plates kept the solver from obtaining the exact ampli-

tude of the radiated sound; however, the reflected waves at the boundaries due to the boundary

conditions kept the solver from obtaining the correct radiation pattern even though the airfoil

pressure distribution was nearly identical.

Of the four boundary conditions tested, the Thompson condition was found to have the high-

est reflection at the boundaries, resulting in code instability. The Giles condition did reasonably

well while requiring very little extra computational work. The Hagstrom condition did not per-

form well for this problem, but it must be noted that it is designed for short-term transient calcula-

tions and not long-term periodic problems such as this one. The Abarbanel and Gottlieb PML

,

Figure 14: Comparison of Specified-Domain and Long-Domain Instantaneous Pressure Contours

with Giles Boundary Conditions
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boundaryconditionperformedthebest,but requireda 20-pointsponge layer at each end. How-

ever, the performance of the PML condition could probably be improved with better specification

of the damping coefficient distribution in the sponge layer.

Currently, boundary condition specification is one of the main sources of error in time-domain

CAA calculations. Work in this area will yield large dividends.
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